牙科网

牙齿是我们与生俱来的重要器官之一,牙齿除了咀嚼切咬的功能,还有辅助发音等功能。很多长寿之人,他们的牙齿健康度都比较好,爱牙和护牙,要从小建立起意识和习惯。面对这些问题,小编为大家收集了“种植体直径和长度对支持组织应力分布的影响”,欢迎阅读,希望能为大家提供一些参考!

种植体直径和长度对支持组织应力分布的影响

目的:观察种植体直径、长度变化时由种植体支持的下颌种植覆盖义齿,在力作用下其支持组织——牙槽骨及种植体周围的应力分布状况,探讨种植体长度和直径变化对支持组织应力分布的影响规律。方法:用三维光弹应力冻结切片法,对4 种不同长度,3 种不同直径的种植体支持的种植覆盖义齿,在力作用下的应力状况进行应力冻结,并在相应部位切片观察,以了解各种状况下其支持组织的应力分布状况。结果:种植体长度变化对种植体周围骨界面及牙槽骨应力的大小有较大的影响,两者呈负相关关系;而在临床常用的几种直径种植体中,直径变化对种植体周围骨界面及牙槽骨应力的影响不大。结论:在种植义齿设计时,应着重考虑种植体长度变化对种植体周围骨界面及牙槽骨应力的影响,种植体直径变化可不作考虑。

目前国内外关于种植体长度和直径对周围骨组织应力分布影响的报道很多,但结论不相一致。从理论上讲,为了使负荷在最大面积的骨组织上分布,应尽可能选用粗大的种植体,Rieger 等[1,2]人的研究证实了这一点,而Meijer[3]则认为骨界面应力受种植体长短影响不大;Lum[4]则通过实验发现应力多集中于种植体颈部而不是整个种植体周围,并据此推论使用短种植体是可行的。 为了解种植体长度和直径变化对应力分布的影响,本研究采用三维光弹应力冻结切片法,对力作用下下颌种植覆盖义齿的种植体长度和直径变化对支持组织应力分布的影响进行研究。

1材料和方法

1.1实验分组

为比较不同长度和直径变化对骨组织应力的影响,设计了两组实验模型。A组,采用直径为3.75 mm,长度分别为10、13、15、18 mm的螺旋圆柱状钛种植体;B组,长度为13 mm,直径分别为3.5、3.75、4.0 mm螺旋圆柱状钛种植体。环氧树脂下颌骨、上半口义齿和石膏底座的复制,种植体的植入部位,以及下颌种植覆盖义齿的制作参见参考文献[5]。

1.2加载及应力冻结参见参考文献[5]。

1.3冻结模型切片的制取与测试参见参考文献[5]。

2结果

A组,选用不同长度种植体时, 下颌种植覆盖义齿支持组织应力值及种植体周围应力值测量结果见图1、2。

图14 种不同长度种植体各切片点应力值变化曲线应力水平100%=0.5439 条纹级数/mm

图24 种不同长度种植体骨面应力测量结果

B组,选用不同直径种植体时, 下颌种植覆盖义齿支持组织应力值及种植体周围应力值测量结果见图3、4。

图33 种不同直径种植体各切片点应力值变化曲线应力水平100%=0.4708 条纹级数/mm

图43 种不同直径种植体骨界面应力值测量结果

3讨论

3.1种植体长度对牙槽骨及种植体骨界面应力的影响

从本实验结果来看,种植体长度与牙槽骨及骨界面应力的关系较大,随着种植体长度的增大,其支持组织——牙槽骨及种植体周围骨界面的应力值逐渐减小,两者呈反比例关系,这与有限元法研究[1,6]的结论相同。 这一结论可以用种植体表面面积的变化来解释,选择了较长的种植体,增加了种植体的表面面积,即增加了骨的结合面积,也就降低了界面的平均应力,所以种植体长度的增加可以明显降低骨界面的应力值,有效地减缓了种植体周围的骨吸收,维护了种植体的长期稳固。

关于种植体长度变化对牙槽骨应力的影响,主要是由于载荷一定时,种植体长度越大,其承受载荷的能力就越强,而造成其周围牙槽骨上的应力就越小。或者说是由于种植体长度越大,其周围骨界面上应力值越小,而整个颌骨作为一个整体受骨界面上应力影响而发生应力改变的可能性越小,故牙槽骨上应力值也就越小。

3.2种植体直径对牙槽骨及种植体骨界面应力的影响

从本实验结果来看,种植体直径变化对牙槽骨及种植体骨界面应力值的影响不大。这与Rieger等的结论不同。通过分析我们可以较清楚地看到,当种植体直径从小到大变化时,其牙槽骨及骨界面的应力值变化趋势是逐渐减小,只不过是由于种植体直径以0.25 mm的幅度变化,未能引起剧烈的应力值变化而造成。根据种植体表面面积与周围应力的关系,如果将种植体直径以较大幅度变化时,可能会引起较为明显的应力变化,这有待于进一步研究来证实。

但由于颌骨的解剖特点及种植体本身强度的限制,我们在临床工作中不可能选用过大或过小的种植体;并且据文献[1]报道,增加种植体的大小超过一定限度后,对应力分布的改变意义不大,而且过大的根面积可能导致骨内应力过小,而应力的过大或过小对骨组织都是不利的。

4结论

4.1全口种植覆盖义齿修复时, 种植体长度的变化对种植体周围骨界面及牙槽骨应力的大小有较大的影响,呈负相关关系。因此在可能的情况下,应优先选择在正常范围内(通常为10~18 mm)的较长的种植体,以降低骨组织应力,减缓牙槽骨及种植体周围骨组织的吸收。

4.2临床常用的几种直径的钛螺旋种植体中, 直径的变化对种植体周围骨界面及牙槽骨应力的影响不大,因此在一般情况下,可不把种植体直径的选择作为必要因素来考虑。

相关阅读

种植体数目变化对牙槽骨应力分布的影响


随着种植体数目的增加,义齿支持组织——牙槽骨的应力值逐渐减小,这主要是因为种植覆盖义齿是由种植体和牙槽骨共同承担和分配力。在力一定的情况下,由于种植体数目的增多,每个种植体上承受的力减小,从而增大了种植体的整体负荷能力,也就降了牙槽骨的负荷,而牙槽骨承担的力明显减小,从而有助医学教育|网搜集整理于维护牙槽骨的健康,减缓了牙槽骨的吸收。

因此,在患者口腔条件许可的情况下,可适当增加种植体数目。但种植体数目过多,可能会使局部种植体密集,不利于均匀分散力,还会影响种植体之间牙龈组织的健康。

种植体数目对骨界面应力影响


从本实验结果可知,随着种植体数目的增加,种植体周围骨界面的应力值逐渐减小。这主要是由于种植体数目增加,减小了单个种植体的负荷,所以造成种植体骨界面应力值的减小。

而远中种植体骨界面的应力大于近中种植体,主要是由于覆盖义齿的后缘一般均超过远中种植体而形成单端桥,而单端桥越长,远中种植体受力越医学教育|网搜集整理大,故在磨牙区种植可以较好地解决远中种植体松动的问题。

因此,在临床工作中,为维护种植体的健康,在可能的情况下,应尽可能多地选择种植体做基牙,同时注意远中种植体尽量靠近远中;如果因为其他原因无法选择较多数目的种植体时,应采到必要的措施,如在义齿与种植体之间使用弹性连接或其他散压装置、减小义齿的颊舌径、降低牙尖高度,增加食物溢出沟等均可减小种植基牙的受力,保护组织的健康,提高口腔种植的成功率。

支抗微种植体对兔牙周组织损伤的影响


随着瑞典科学家BRANEMARK等[1]骨结合理论的提出和现代种植技术的快速发展,一系列的种植体支抗在口腔正畸专业得以开发应用并取得了成功[2~5]。近年来发展很快的微型种植体支抗(MIA),以其支抗性能稳定[6]、体积小、植入部位灵活、低创伤、手术操作简单等特点受到了广大正畸临床医师的欢迎,逐渐成为支抗研究的亮点和热点。MIA由纯钛制成,直径一般在1.2~2.0 mm,可植入相邻两牙的牙根之间、上颌结节处、腭部及磨牙后区三角,可以说,微型种植体有效克服了传统的种植体支抗所受到植入部位的限制,几乎能够植入正畸医师所需要的任何一部位。临床上最常用的植入部位是两牙牙根之间的牙槽骨中。但是,由于两牙牙根之间的牙槽骨骨量的限制,在操作中植入点和 植入方向稍有偏颇,就容易导致不必要的组织损伤,最容易导致的并发症之一就是两侧邻牙的牙周膜被损伤。本项实验通过建立兔牙周膜MIA损伤模型,观察其损伤后组织愈合、修复的过程和方式,并探讨这种损伤可能会造成的后果和影响。

1 材料与方法

1.1 材料 健康家兔12只,雄性9只,雌性3只,体质量为(3.0±0.4)kg,兔龄8~11个月。微型种植体12枚,西北中邦公司生产,非自攻型,直径为1.2/ 1.4 mm ,长度为7 mm。

1.2 实验方法应用0.2 mL/kg地西泮和盐酸氯胺酮混合液,对家兔进行麻醉后,局部消毒,选择5号尖刀片切开上、下颌中切牙之间的牙龈黏膜组织,切口长约 2 mm ,距龈缘约3 mm,用骨膜剥离器剥离牙龈组织,用微型种植体专用的慢速车针钻开骨皮质。然后用专用螺丝刀将微型种植体直接旋入牙槽骨中。旋入微型种植体时要使植入方向发生偏移,以确保能够损伤相邻牙齿的牙周膜。术后即刻用螺旋CT对手术部位进行断层扫描(层距为1 mm),然后利用三维软件进行该部位的三维重建,观察种植体所处的位置以及与邻牙牙根之间的解剖关系,如经检查方向有误,种植体与邻牙牙根无接触,则取出后变换方向重新植入,再次经CT检查与邻牙牙根有接触后为成功。即刻用专用螺丝刀直接将微型种植体直接从骨组织中旋出。将12只家兔分别在手术后的第1、5、28、56天处死,每次处死3只。

1.3 标本的制作及病理结果的观察 取下包含受损伤牙齿的上、下颌骨骨块,修整、固定、脱钙脱水,石蜡包埋,切片(厚3 μm),苏木精-伊红染色,光学显微镜下(100~200倍)观察受损牙周膜的愈合过程及其修复方式,并照相。

2 结果

手术后第1天,受损伤部位的牙周膜连续性受到破坏,产生机械断裂,牙周膜纤维与牙骨质的连接中断,牙周膜局部增宽。手术后第5天,受损伤部位开始修复,牙周膜的纤维结缔组织增生,排列稍乱;纤维母细胞增多,细胞核较大,胶原明显增多;牙周膜下方可观察到有化脓性炎症,周围有大量的中性粒细胞浸润。手术后第28天,受损伤部位的牙周膜内纤维结缔组织的修复已经基本完成,牙周膜纤维与牙骨质的连接重新建立,但牙周膜的宽度比正常情况下增宽,胶原纤维增多,排列稍有紊乱,炎症已经基本消退;牙周膜与牙槽骨之间的连接逐渐建立。手术后第56天,受损伤组织的修复已经基本完成。牙周膜、牙骨质及牙槽骨三者之间又建立了紧密的联系,但修复后的牙周膜宽度增加,胶原增多,可见比较粗大的胶原纤维带的形成,其细胞成分相对较少,与牙槽骨的连接仍欠平滑,束状骨板还未完全修复。

3 讨论

牙周组织包括牙周膜、牙槽骨和牙龈。其中牙周膜的作用最为重要[7]。本文结果显示,牙周组织在受到损伤后基本可以顺利地进行自我修复。牙周膜的修复仍为纤维结缔组织的修复,在功 能上得到了最大程度的保护。但是牙周膜的修复并不是完全的、彻底的。正常的牙周膜纤维排列规则有序,含有大量的细胞成分,这对维持牙齿的正常功能具有重要的作用。而修复后的牙周膜,宽度略有增加,胶原成分相对增多,可见比较粗大的胶原纤维带的形成,其细胞成分相对较少,这些变化对受损伤牙齿的生物学行为会带来一定的负面影响。总体而言,微型种植体对家兔牙周膜所造成损伤的修复整体结果是较好的,因为这种损伤的范围较小,作用时间短,而且是在无菌手术操作的条件下发生的。有研究表明,牙周组织再生困难的可能原因是缺乏足够的活性细胞,残余的牙周膜及骨组织自身固有修复能力较弱[8]。本实验中,微型种植体致牙周膜损伤的范围较小,作用时间短,而且是在无菌手术操作的环境下发生的,所以有足够的剩余牙周组织进行修复。但是在临床上,如果微型种植体植入后损伤了牙周组织而没有被发现,或者手术时损伤的范围较大,损伤是否会加重,组织修复结果是否仍如本实验的结果,以及受伤牙齿在受到正畸力时是否还能够发生正常的移动,还需要进一步的实验和探讨。本实验是人为地用微型种植体造成兔牙周组织的损伤,损伤较为轻微,但是大部分的牙骨质都被不同程度的伤及,说明微型种植体已经和牙根发生了接触,可是在种植体植入的操作过程中,手术者并没有感觉到明显的阻碍感。提示,在临床操作中,尽管使用的微型种植体是非自攻型的,但是仅凭手感来确定微型种植体有无损伤牙根还是不确定的,必须拍摄X线片予以确认。当然,在的临床工作中,让每一个病人植入微型种植体后都做螺旋CT扫描和三维重建也是不太现实的,但是起码应该拍摄X线根尖片,对可疑与牙根有接触者,应再从不同角度拍摄,直至确定是否有接触。此外,许多学者认为,植入颌骨内的微型种植体在受到正畸力的作用下,会发生少量的位移,主要发生在垂直方向上[9,10]。虽然水平方向位移较小,但是随着治疗的进程,很有可能会使原本没有接触的牙根与微型种植体发生接触,这时病人可能会产生疼痛的感觉或者受力牙齿不再发生移动,重要的是微型种植体可能会伤害到一些重要的组织器官,如上颌窦、下颌神经管以及小血管等[11]。所以,定期拍摄X线片复查有一定的必要性,尤其是原本牙槽骨骨量较少或植入后的微型种植体与周围的组织器官比较接近者,而且如果选用的是自攻型微型种植钉则更要注意此类情况的发生。

综上所述,在进行微型种植体植入手术的操作过程中,必须对植入的位置和方向进行精确地控制,尽量避免伤及邻牙的牙周组织。

表面处理对种植体骨结合的影响


这个研究的首要目标是比较SLActive和TiUnite种植体在骨-种植体界面的抗剪切强度。第二个目标是比较两个不同的表面骨和种植体的接触量BIC。

这项研究的假设是,通过生物力学和组织学手段评价SLActive种植体能够更好的促进材料和骨的结合。

材料和方法

试验选择总共30只兔子(最小年龄9个月),试验组的两个种植体(美学种植体standard plus,直径4.1mm.RN,8mm)和两个对照组的种植体(Replcce" Select Taper,直径4 .3 rnm. TiUnite?, 10 mm, 和8.5 mm TiUnite?种植体对照)植入胫骨,一个实验组和一个对照组种植体植入股骨。随机选择实验组和对照组植入左右侧。对10只兔子在愈合过程中的10天,3周,6周三个时间点进行评价。对种植在胫骨的的实验组和对照组的种植体进行抗剪切强度的测试,因此,测量移除种植体所需的力矩值,随后计算抗剪切强度值。所有种植体都进行组织形态学的研究。

结果

抗剪切强度

植入10天后,SLActive种植体比TiUnite种植体的平均抗剪切强度高,但是没有统计学意义,在3周和6周种SLActive植体的抗剪切强度的均值仍高于TiUnite种植体,而且有统计学意义

组织学观察

本实验的第二个目的需经组织形态学的研究,目前正在进行中

结论

这个研究提出钛种植体的表面抗剪切强度很大程度上受其表面处理的影响,在兔的胫骨种植后3和6周,SLActive表面的种植体表现出有统计学意义的高抗剪切强度。

种植体周围组织病变治疗原则


种植体周围组织病变治疗原则

种植体周围一旦出现骨吸收,即不易逆转,目前尚无特效的治疗方法,所以特别强调种植术后的维护,对种植体周围炎的预防重于治疗。

治疗种植体周围组织病变的基本原则是持之以恒地彻底去除菌斑,控制感染,消除种植体周袋,制止骨丧失,诱导骨丧失,诱导骨再生。包括初期的保守治疗和二期手术治疗,与牙周炎的治疗方法相似,但有其特点。

1.初期治疗

去除病因有菌斑、牙石沉积的种植体,周围粘膜探诊出血阳性,无溢脓,探诊深度≦4mm,应进行机械除菌斑治疗。机械清除天然牙及种义齿各个部分如种植颈、种植基台、上部结构龈面等处的菌斑、牙石。必须用塑料器械或与种植体同样硬度的钛刮治器,使牙石碎裂,用橡皮杯和抛光膏抛光种植体表面以清除菌斑。由于钛种植体表面易磨损,传统的金属刮治器不能用于种植体,他们会损伤钛表面,形成粗糙面,促进菌斑沉积。

如果负载过重,则应除去过重的咬合负荷。

氯已定的应用在探诊出血阳性,探诊深度4-5mm,有或无溢脓的种植体部位,除机械治疗外,还应使用氯己定治疗。每日用0.12%-0.2%的氯己定含漱,种植体周袋部位用0.2%-0.5%的氯己定龈下冲洗,活在感染部位局部应用0.2%氯己定凝胶。一般需3-4周的抗菌剂治疗,可获得治疗效果。

抗生素治疗在探诊出血阳性,探诊深度6mm,有或无溢脓,并有X线片显示骨吸收的种植体部位,在机械治疗和应用氯己定后,还必须使用抗生素——甲硝唑或替硝唑全身给药,也可局部使用控释抗生素。

2.手术治疗

初期治疗成功地控制炎症后,有些病例可以进一步作手术治疗。手术可分为切除性和再生性。前者使袋变浅,修整骨外形,清除种植体表面的菌斑牙石使之光洁;而再生性手术除上述目的外,还在于使种植体周围的骨有再生。

种植体与龈组织间的界面


种植体与龈组织间的界面

牙龈软组织与种植体接触形成的界面即龈界面,上皮细胞粘附在种植体表面而形成生物学封闭,又称袖口(cuff)。种植体的成功与牙龈封闭的质量有直接关系。牙龈软组织细胞是通过其表面特殊的蛋白多糖与种植体表面的血清蛋白的吸附层相互粘附,上皮细胞分泌细胞外基质,然后在细胞膜和钛氧化膜之间形成半桥粒,从而附着。其具体机制目前尚无定论,1989年Steflik提出了上皮与种植体附着的动态过程,认为结合上皮胞浆内富含粗面内质网生成的氨基葡聚糖,通过高尔基复合体,将其装配在分泌性囊泡中,结合上皮先通过伪足与种植体形成初步粘附分泌性囊泡移至该部位后,泡内所含的氨基葡聚糖排出,在种植体表面形成一层无定形的胶样物,最后逐步形成与种植体表面平行的基底膜,其间为类似点溶合状的半桥粒。

所谓半桥粒其典型结构是:该区质膜下胞质中有一个由蛋白质构成的盘状附着板,其上有许多张力原纤维附着,板内侧伸出更细的丝,钩住并连接这些纤维,张力原纤维在附着板处反折成襻,并向细胞质方向散开,横穿细胞内部形成网状结构,就像是细胞内张力原纤维的抛锚点,将细胞锚定于基底上。近来有人通过试验证实,外源性利用基底膜基质(Matrigel)及牙骨质活性蛋白有助于种植体的龈结合。

在临床上,种植体与牙龈衔接的部分(即种植体基台)在生产加工上要求非常光洁,其表面粗糙度Rz值应在1.6μm ~3.2μm之间 , 主要是防止口腔牙垢及牙结石在基台表面附着。但是,由于口腔环境与外界相通,食物残渣又容易残留在口腔,如果患者每天不能对种植体基台进行很好的清洗,即使种植体基台非常光洁,但长时间牙垢的堆积,会使基台表面越来越粗糙,而粗糙面会导致更多的牙结石。如果健康的牙龈经常受到不良刺激,可能发生牙龈炎症,以至破坏种植体与牙龈之间很好的生物封闭状态,最终引起种植体的松动和失败。所以保持种植体基台的加工精度和清洁是非常重要的。

种植体周围组织概述|病变病因


种植体周围组织概述|病变病因

一、种植体周围组织病变概述:

种植体周围组织病变是发生于种植体周围软硬组织的炎症损害,包括累及软组织的可逆性种植体黏膜炎和累及种植体植骨床、造成骨吸收的种植体周围炎。后者如果不及时治疗,将导致持续的骨吸收和种植体-骨界面原有的结合分离,最终使种植体松动、脱落。种植体周围炎是导致种植体失败的主要原因之一。

二、种植体周围组织病变病因:

目前认为种植体周围组织病变的主要致病因素是种植体上的菌斑微生物和负载过重,此外,其他一些因素也对种植体周围病变的发生起到促进作用。

菌斑微生物种植体周围组织病变和牙周病类似,菌斑聚集是导致疾病的始动因素。当软硬组织存在炎症病损时,种植体周的菌斑主要有革兰阴性厌氧菌、产黑色素厌氧菌及螺旋体等组成。

部分缺牙患者于无牙颌患者的种植体周围菌斑组成有所不同。前者菌斑中常见牙龈卟啉单胞菌、螺旋体等牙周致病菌。而无牙颌患者的菌斑组成更接近健康牙周的菌斑,主要含中间普氏菌、聚核梭杆菌等机会致病菌,而很少发现牙龈卟啉单胞菌和螺旋体。

生物力学负载过重咬合负载过重是种植体周围炎发病的重要促进因素。它导致种植体-骨界面产生微笑骨折,形成垂直性骨吸收,继而又上皮和结缔组织向根方增值移行,包绕种植体。如组织移行速度取决于政治题负载大小和叠加的细菌感染程度。负载过重并同时伴有细菌感染时,疾病进展会大大加速。

可能导致种植体生物力学过载的因素如下:

颌关系:义齿颌接触关系不正常,使种植体承受过大的侧向力。

义齿固位:上部结构固位差易造成种植体损伤。

种植体数目:种植体数目越多,每个基牙上承受的合力相对减少。

义齿设计:在种植体义齿设计中,如设计成单端桥,桥体长度越大,末端种植体上分布的应力越大。

牙周炎患者口腔内其他天然牙的牙周状况也会对种植体周的健康产生影响,未经治疗的牙周炎患者种植体失败率高,故施行种植义齿前必须彻底治疗口腔内存留牙的牙周炎,牙周炎控制后再进行种植修复。

吸烟:

是影响种植体周围炎三十的一个重要因素。有研究显示,吸烟者种植体边缘骨的年吸收量大于非吸烟者,如果吸烟者的口腔卫生状况不佳,其骨吸收更多。若吸烟者在种植术前后戒烟,牙槽骨吸收较不戒烟者减少。如果早期种植体周围炎患者在接受治疗能同时戒烟,治疗效果和预后会明显改善,而继续吸烟者的种植体周围组织仍可能进一步破坏。

其他影响因素:

1.种植义齿类型。

2.种植体形状及表面处理。

3.手术技术及术后处理。戴牙后龈沟内的粘接剂如果出去不干净,很容易引起种植体周围组织发炎,继而导致牙槽骨吸收,引起种植体松动。

4.骨的质和量。

5.软组织附着类型。

6.生物学宽度、种植体的深度、龈瓣的设计等也与种植体周围组织病变的发生发展有一定关系。

7.患者的全身健康状况:如果患者患有糖尿病等全身系统性疾病,会影响种植体的愈合,并可能影响种植体周围组织对菌斑微生物等刺激因素的反应。

牙齿种植:口腔护理行为对种植体周围炎的影响


种植义齿的护理不仅仅是种植临床医生的责任,而是包括患者在内的整个种植治疗团队的责任,最关键的是医患间能保持长期而有效的沟通,患者能充分认识到口腔维护的重要性,对种植义齿进行自我维护和专业维护,以保证种植体的长期成功。

何为种植体周围炎

种植义齿修复后,由于口腔卫生不良或清洁方法不当,暴露在口腔内的种植体基台清洁较差,黏附在基台上的菌斑刺激牙龈,就产生了种植体周围炎。临床表现与牙周炎相似,严重者可引起骨吸收、种植体丧失,致使种植修复失败。

种植体周围炎的产生是以菌斑微生物为主要病因、同时多种风险因素累加控制其进程的一种疾病;种植体周围炎的易感性不单局限于某一因素,往往是多因素联合作用。

口腔维护是关键

口腔卫生与种植体周围炎密切相关:表面粗糙的种植体、上部基台和冠修复体,以及基台和冠修复体的间隙,都有利于种植体龈沟菌斑附着积聚,促使种植体周围炎的发生和发展;而良好的口腔卫生习惯,是预防牙菌斑沉积的有效方法之一。

种植义齿的护理包括种植术后种植体的护理和上部修复后种植义齿的护理。种植义齿的护理不仅仅是种植临床医生的责任,而是包括患者在内的整个种植治疗团队的责任,最关键的是医患间能保持长期而有效的沟通,患者能充分认识到口腔维护的重要性,对种植义齿进行自我维护和专业维护,以保证种植体的长期成功。

怎样进行种植义齿的自我维护

种植修复完成后,患者应该对种植义齿进行有效而持久的自我维护,同时种植医生也必须与患者良好沟通,以进行监督和正确的指导。种植义齿的自我维护有以下几方面:

1、刷牙

正确而有效地刷牙是控制菌斑的首选方法,建议采用改良bass刷牙法,使用小头软毛牙刷和微磨料牙膏。至少每天2次,每次至少3分钟。

2、使用牙线

清洁牙齿邻面菌斑的方法,适用于牙间乳头无明显退缩的牙间隙。一般在临睡前、刷牙后使用。

3、使用牙缝刷

清除邻面菌斑和有根分叉病变区域的方法。适用干牙间乳头明显退缩的牙间隙,根据邻间隙的大小选择合适的牙缝刷。一般在临睡前、刷牙后使用。

口腔清洁要重视

多项独立研究均发现,口腔卫生护理行为如刷牙次数和刷牙时间对种植体周围炎的发病率有显著影响。每天刷牙2次以上的患者种植体周围炎的发病率显著低于每天只刷牙1次的患者。刷牙时间小于3min的患者种植体周围炎发病率显著大于3min的患者。吸烟患者种植体周围炎发病率也高于不吸烟的患者。

一些研究也发现,使用硬毛牙刷的患者较使用软毛牙刷的患者更易患种植体周围炎,不使用牙线的患者也更易患种植体周围炎,但仍有争议。此外,种植术后患者还应接受定期牙周洁治,将天然牙表面与种植体表面的菌斑和牙结石进行彻底清理。

因此,对所有的患者都应该强调口腔卫生的重要性,并演示如何清洁修复体,特别注意修复体牙龈边缘的清洁,最终建立合理的口腔卫生保健措施。

单因素改变种植体直径或长度种植固定桥的三维有限元分析


揭示相同直径不同长度或相同长度 不同直径种植体支持式固定局部义齿(FPD)的应力分布规律。方法 利用三维有限元(3D-FEM)建立力学模型在垂直和水平加载条件下进行分析计算。结果FPD应力分布出现不均衡状态,其种植体骨界面应力集中区的 应力值和位移均增大,不利于种植体修复的远期成功。结论种植固 定桥修复中种植体的型号的选择以同型号为佳。
【关键词】种植体固定桥有限元应力和位移

在种植义齿修复中,生物力学相容性差是种植义齿修复失败的一个 至关重要的原因[1]。在临床工作中经常遇到骨量不足或腔、窦、神经管等影响而 选用较短或较细的种植体的情况,当两种不同型号的种植体联合应用并作为固定桥支持基牙 时其生物力学相容性是否有差异,掌握此种情况FPD应力分布规律对提高种植义齿的远期成 功率有重要意义。本文利用3D-FEM对此进行了生物力学分析,研究其对种植体周围支持组织 的影响,为临床设计提供理论基础。

材料和方法

一、模型的结构基础:选择一牙齿脱落的成年型下颌骨作为构建FEM模型的结构 基础,其符合或超过Misch建立的牙槽骨四种分型的Division A[2]。本模型是以第 二磨牙存在时的远中面向前截取30mm下颌骨骨段,其平均高度及宽度分别为30mm及12.5 mm。沿颊舌向切成15个切片(德国Leitz-1600高速锯切片切)。切片的位置同每一个切片上皮 质骨及网状骨的厚度可通过测微计(无锡0-100mm镀铬游标卡尺)测得,并于计算机(SGI工作 站)上建立模型,种植体植入(位于模型两端外10mm的中点)和桥体连接均在计算机上进行。 根据计算机计算和结果显示的需要设垂直加载270N、水平加载100N,此加载均在人最大咬合 力范围之内[2]。模型采取近远中端固定

二、材料的力学参数:从资料[3]中可以得到所用材料的杨氏模量和泊松比见表1。

表1材料的力学性质

三、种植体的选择:近中侧种植体的直径/长度(单位:mm)均为4/10;远中 侧分别为4/10,4/7,3/10三种情况(A、B、C三种组合情况)。
注:①所设近中侧种植体依据Branemark种植系统临床常用型号;②为计算分析简便,将Bra nemark种植体形状简化为等直圆柱状;③种植体联合修复后龈上高度均为8mm。
四、研究内容:对固定桥两端种植体在上述三种组合情况分别于桥正中垂直及水平加载时种 植体及其周围骨组织应力分布进行分析并计算出两侧种植体周围骨组织最大应力值及其最大 应力点的位移值。
五、划分单元:通过计算机划分单元,模型共有节点18063个,组成16714个单元,其中六面 体单元15454个,五面体单元1260个。
六、假设条件:在本研究中使用下列条件:①在模型中所用材料都是均质各向同性且呈线弹 型;②种植体与骨呈100%的结合状态;③种植体植入角度近远中无倾斜,颊舌向以正常下颌 牙的长轴方向为准。
七、计算:在计算中使用MSC/NASTRAN结构分析程序,结果通过种植体与周围骨组织界面的 最大应力值及位移值(压应力侧最大应力点)给出。
结果

一、在固定桥垂直或水平加载时应力集中区均位于种植体颈部周围骨组织界面, 最大应力点位于此区的最上点。垂直加载时种植体加载侧主要为拉应力,远离加载侧为压应 力;水平加载时种植体加载侧(颊侧)为拉应力,对侧(舌侧)为压应力。其最大应力值.

表2最大应力值(单位:MPa)

双螺纹设计对种植体稳定性的影响


双螺纹设计对种植体稳定性的影响

【摘要】 目的 通过共振频率分析仪和组织病理形态学来比较分析双梯形螺纹种植体和经典的“V”型螺纹种植体对种植体的初期稳定性及功能性负荷下后期稳定性的影响。方法 选择杂种狗12只,拔除下颌前磨牙,3月后植入种植体,再经3个月愈合后行修复治疗,负重3个月后处死。在植入、修复、负重1个月、负重2个月及处死时分别应用共振频率分析测量种植体的稳定性。处死后取标本制成非脱矿磨片进行组织形态学分析。结果 两组种植体在各时期的稳定度差异均无显著性,但在每一时期实验组种植体的稳定度均较对照组高,实验组种植体在负重后稳定度恢复较快,负重3个月后实验组的骨-种植体接触率(BIC)和种植体周围骨面积(BA)均较对照组稍高,但两者差异无显著性。结论 双梯形螺纹种植体有利于保证种植体的初期和后期稳定性,应用于低密度骨质优越性会加明显。

【关键词】 种植体;螺纹;稳定性

种植体的设计是指种植体的三维结构,包括其几何形态和表面形态的变化。螺纹状种植体具有较大的骨-种植体接触面积,并且由于其几何形状的特性,可以有效地增加其初期稳定性[1]。另外,螺纹状种植体能够较好地将咬合力平均分配至周围的牙槽骨,因此与柱状种植体相比,螺纹状种植体被认为具有较好的治疗效果[2]。而螺纹的设计主要包括螺纹间距、螺纹的形状和螺纹的深度三个方面。本研究的目的在于是通过共振频率分析仪和组织病理形态学来比较分析新型螺纹设计的种植体和经典的“V”型螺纹种植体对种植体的初期稳定性及功能性负荷下后期稳定性的影响。

1 材料与方法

1.1 种植体及实验分组 实验组种植体为新型螺纹设计种植体,在初级螺纹上再次进行切割形成双梯形螺纹结构,初级螺纹间距为0.8mm,螺纹的角图1 在初级螺纹上再次进行切割形成双梯形螺纹结构 度为60°,具体型见图1;对照组为“V”形单螺纹种植体螺纹间距为0.6mm,螺纹的角度也为60°,所有种植体表面均经RBM(Resorbable blast media)处理,直径为4.0mm,长度分别为11.5mm。每种种植体取6颗分别植入12条成年杂种狗,体重为20~25kg(种植体由韩国奥齿泰公司提供Osstem Bio,Korea.见图2,3)。

1.2 手术过程 经全身麻醉(Ketamine 10mg/kg及Rumpun 5mg/kg im)后,拔除实验动物双侧下颌前图2 双梯形螺纹种植体图3 单“V”形螺纹种植体磨牙。愈合3个月后,在前磨牙区顺牙槽嵴顶切开翻瓣,行逐级备洞后分别植入种植体,种植机转速控制在l,500rpm以下,同时持续给予大量生理盐水冷却。最后将龈瓣复位,行间断缝合。3个月后再次切开,连接实心基台,行单个树脂冠修复,调整咬合,进行负重。负重3个月后分别将动物处死获取标本。

1.3 种植体稳定度的测量 种植体在植入、修复、负重1个月、负重2个月及处死时分别应用共振频率分析(Resonance Frequency Analysis, RFA)测量种植体的稳定度。Osstell装置是一种可临床应用的共振频率分析仪(OstellTM, Intrgration Diagnostics,Goteberge, Sweden),在测量种植体稳定度时,Osstell装置的数值有两种表示方法:一种为共振频率(Hz);另一种为种植体稳定系数(Implant stability quotient,ISQ), ISQ值的大小表示了种植体骨界面的刚性强度。在本实验中,我们采用ISQ记数模式来测定种植体的稳定度,ISQ数值由1到100,数值越大表示种植体具有越好的稳定度。在实验中每一回均测量3次,取其平均值。

1.4 脱矿组织磨片制备 行下颌骨骨块切除获取种植体及周围骨组织标本后,立刻将其浸泡于10%富尔马林液固定48h,然后经浓度递次升高的乙醇脱水,再将标本置入塑化树脂(Exakt System, Exakt Apparatebbau, Norderstedt, Germany)中聚化固定。再用硬组织切片机(Exact-cutting Grinding System, Exact Apparatebbau)顺种植体的长轴颊舌向将含有种植体的塑脂块切割成厚度为100~150 μm薄片,在流水冷却下最终打磨至约30μm。在标本制备过程中注意保护骨-种植体界面。组织切片制备完成后行苏木素-伊红(Haematoxylin-eosin)染色,光镜下观察。

1.5 组织形态学分析 通过100×光学显微镜(Olympus, Japan)观察分析骨种植体界面的组织成分。标本的组织形态经高分辨率影像处理(GP15/2; Kappa, Germeny)并传入显示器后测量种植体颊侧中份连续三个螺纹中的骨-种植体接触面,其分析数据以骨-种植体接触率(BIC: bone-implant contact)及种植体周围骨面积(BA:mineralized bone area)来表示。

骨-种植体接触率(BIC) =(骨-种植体接触长度/种植体总长度)×100%

种植体周围骨面积(BA)=(螺纹内骨面积/螺纹内总面积)×100%

1.6 统计学分析 两种种植体的ISQ以及BIC和BA之间的差异通过t检验进行统计学分析。P<0.05则被认为差异有显著性。

2 结果

2.1 临床观察 在实验期间,所有动物均保持健康无并发症,种植体无松动,临床成活率为100%。X-线检查见图4,5。

2.2 种植体稳定度 本研究结果显示两组种植体在植入时、负重时及负重后每一期间的种植体的稳定度差异均无显著性,但实验组种植在每一期间的种植体的稳定度均较对照组高,实验组的种植体的稳定性在负重1个月时最低,然后逐渐增高,并在第2个月时就超过了负重的稳定度,而对照组的种植体稳定度在负重2个月后持续下降,直至第3个月时才开始恢复(见表1)。图4 实验组X-线检查图5 对照组X-线检查表1 两组种植体的ISQ值及统计学处理 (略)

2.3 组织形态学分析 实验组种植体在负重3个月后的骨-种植体接触率(BIC)和种植体周围骨面积(BA)均较对照组稍高,但两者差异无显著性(见表2)。表2 两组种植体的BIC值和BA值 (略)

3 讨论

种植体在植入骨内后具有足够的稳定性不仅是种植体周围的骨组织在愈合期间新生和改建的必要条件,而且还可以使功能性的口腔咀嚼咬合力能够通过骨-种植体界面理想地传导并分布至牙槽骨上。种植体的稳定性主要取决于三方面的因素:即骨-种植体相接触的面积和强度、周围骨组织的强度以及种植体的弹性强度[3]对于愈合期及功能期而言,种植体的稳定性的含义是截然不同的,良好的初期稳定性在种植体植入时是必须的,后期的稳定性则是相对于功能期的种植体而言的,是发生在骨整合形成之后的[4]。设计螺纹的目的在于增大种植体表面积,使种植体与骨的初期接触面积最大化,同时有利于分散骨-种植体界面的应力[1]。种植体的生物机械学性能与种植体的螺纹设计有着密切关系,而螺纹的设计主要包括螺纹间距、螺纹的形状和螺纹的深度三个方面。

螺纹间距越小单位长度的种植体上的螺纹也越多,相应的表面积也越大。因此在合力大、骨密度低的区域可应用螺纹间距小的种植体来增加种植体的表面积。但是,种植体螺纹的多少与手术操作的难易有着直接的关系,螺纹越少,功丝和种植体的植入就越简单,尤其是在骨质较硬部位,选用螺纹少的种植体更易进行手术操作。近来还设计生产了双螺纹或三螺纹结构的种植体,种设计可以使种植体更快地植入,缩短手术时间,从而减少了热量的产生,有利于种植体与周围骨组织的结合;同时由于这种种植体在植入时需要更大的植入扭矩,因此也强化了周围骨组织对种植体的卡抱力,使种植体具有更高的初期稳定性。本研究使用的种植体是在初级螺纹上再次进行切割形成双梯形螺纹的结构,初级螺纹间距为0. 8mm,较对照组种植体螺纹间距大,但双螺纹的设计使种植体的表面积并未减少。实验结果虽然显示两组种植体在植入时种植体稳定度差异无显著性,但实验组的种植体稳定系数(ISQ)较对照组略高,证明了实验组种植体并未因螺纹间距的增大而影响种植体的初期稳定性,而新型设计的双螺纹结构不仅可以使种植体植入简单,还有助于提高种植体的初期稳定性。

螺纹的形状是螺纹设计的另一重要部分,螺纹的形态不仅可以改变功能性负荷下的应力的大小还可以影响骨-种植体界面应力的类型。常用的种植体主要有“V”型螺纹、平螺纹和锯齿形螺纹等。在咬合负重时,“V”型螺纹和锯齿形螺纹种植体的应力集中位于螺纹的尖顶部。Kohn等[5]通过病理观察发现在“V”型螺纹种植体(Branemark, Nobel Biocare)上给予侧向负荷,骨-种植体的直接接触只发现在螺纹的基底部,而在螺纹尖顶部分则没有骨-种植体的直接接触,这是由于在侧向负荷下在“V”型螺纹尖顶部产生了更高的微张力(Microstrain), 使种植体周围的骨组织以吸收为主,而在螺纹的基底部产生的微张力较小,使周围骨组织得以维持。Kim等[6]应用三维有限元素分析,对“V”型螺纹、锯齿形螺纹和平螺纹三种螺纹设计的种植体进行了比较研究,结果显示在同等负荷条件下,和“V”型螺纹和锯齿形螺纹种植体相比较,作用在平螺纹种植体上的剪切应明显小于其他两种种植体。另有动物实验研究显示,“V”型螺纹、倒锯齿形螺纹和平螺纹三种种植体在经过

冲击载荷下骨外段种植基桩不同高度对下颌覆盖总义齿应力分布的影响


冲击载荷下骨外段种植基桩不同高度对下颌覆盖总义齿应力分布的影响

【摘要】目的分析骨外段种植基桩高度不同对下 颌种植覆盖总义齿应力分布的影响。方法应用CT扫描法建立下颌种 植覆盖总义齿三维有限元模型,分析冲击载荷下骨外段种植基桩高度不同对下颌种植覆盖总 义齿应力分布的影响。结果随种植基桩高度的降低,种植体内部及种植体软硬组织界面应力分布更为均匀。结论在保证义齿固位稳定 的前提下,在一定范围内降低种植体骨外段基桩高度有利于保护种植体及其周围软硬组织健 康。

【关键词】三维有限元应力分析种植覆盖义齿冲 击载荷种植覆盖义齿因其独特的连接与支持方式,要求骨外段种植基桩有 一定高度以维持固位和稳定,而过高又会影响基托厚度和排牙,故本实验只取基桩高度在小 范围内变化(2mm范围)时,讨论其对支持组织应力分布的影响。
材料和方法

1.三维有限元模型的建立:选一牙槽骨中度吸收的成人无牙下颌骨标本,作为 构建有限元模型的解剖学基础。在双侧颏孔间区制备4个圆柱形Branemark种植体受植骨床( 深13mm,直径3.75mm)使远中种植体末端距颏孔6mm,种植体彼此平行、间距相等。在下 颌骨上粘上不同厚度橡皮膏模拟粘骨膜厚度[1]。选用Bayer塑料牙常规完成上部义 齿制作。将此实体模型在岛津5000TCT机上,使CT机平行于义齿咬合面自下颌骨下缘至髁状 突以2mm层厚连续扫描,共扫描30层。在透明坐标纸上描记各CT片义齿及下颌骨各部分结构 轮廓,在SGI计算机工作站上应用FEMB软件生成相应坐标网格,参照坐标图像及坐标原点, 逐点描记输入下颌骨及义齿各部分的边界信息经边界平滑处理及坐标转换完成图像数字化, Branemark种植体的植入在计算机上完成,获等大下颌种植覆盖总义齿实体模型。为简便运 算,将种植体与骨外段基桩视为上下一体、粗细一致的圆柱体,根据种植体骨外段基桩长度 不同,下颌种植覆盖总义齿模型可分为:模型1,种植体全长20mm,骨内段长13mm;模型2, 种植体全长19mm,骨内段长13mm;模型3,种植体全长18mm,骨内段长13mm。应用FEMB软件 ,在计算机上自动划分有限元单元和结点,共有4252个结点,3684个单元,其中四面体单元 448个,五面体单元990个,六面体单元2246个。

2.材料的力学参数:弹性模量和泊松比见表1。

表1材料的弹性模量和泊松比

3.实验条件假设及边界条件:将模型中各种材料和组织考虑为连续、均质 、各向同性的线弹性材料,材料变形为小变形;种植体与骨界面为100%骨性结合,加载不发 生相对滑动;边界条件:在下颌骨双侧髁状突喙突及下颌角嚼肌附丽区给予刚性约束,阻止 下颌骨的刚体移动。

4.加载条件:加载量200N,方向与牙咬合面垂直,采用等效结点载荷,双后牙游离端加载, 加载部位为双后牙功能接触面,各牙受力为:各18.78N;,各21.875N;,各31.25N;,各28.125。加载方 式为冲击载荷,参考资料取后牙一个咀嚼周期为0.875秒,正中牙合接触时间(冲击载荷时间)0.2秒。

5.设备:SGI计算机工作站(美国SGI公司);NASTRAN有限元分析软件;FEMB、XL前处理、后 理处软件。 结果冲击载荷下骨外段种植基桩高度不同对支持组织应力分布的影响结果见表2。

表2冲击载荷下种植基桩高度不同对支持组织应力分布的影响(Mpa)

种植体全长20mm种植体全长19mm种植体全长18mm
最大值部位最大值部位最大值部位
中央种植体拉应力

0.98

颊侧骨外段

1.19

颊侧骨外段

1.23颊侧骨外段
压应力-0.54舌侧骨外段-0.74舌侧骨外段-0.75舌侧骨外段
侧方种植体拉应力0.36颊侧骨外段0.47颊侧骨外段0.48颊侧骨外段
压应力-2.87舌侧骨外段-2.66舌侧骨外段-2.65舌侧骨外段
中央种植
体骨界面
拉应力0.37颊颈部皮质骨0.37颊颈部皮质骨0.37颊颈部皮质骨
压应力-0.38舌颈部皮质骨-0.33舌颈部皮质骨-0.32舌颈部皮质骨
侧方种植
体骨界面
拉应力0.20颊颈部皮质骨0.20颊颈部皮质骨0.20颊颈部皮质骨
压应力-1.22舌颈部远中皮质骨-1.09舌颈部远中皮质骨-1.05舌颈部远中皮质骨
粘骨膜拉应力0.79磨牙后垫颊侧0.79磨牙后垫颊侧0.79磨牙后垫颊侧
压应力-1.54侧方种植体
远中舌侧
-1.48侧方种植体
远中舌侧
-1.44侧方种植
体远中舌侧

讨论

1.对种植体内部应力分布的影响:随着骨外段种植基桩高度的降低,种植体内部 拉应力峰值有所增加;对侧方种植体损害较大的压应力峰值减小,同时中央种植体内部压应 力增加,说明基桩高度降低,使中央种植体帮助承担了更多应力,应力在中央与侧方种植体 内的分布更为均匀合理,减小了压应力在侧方种植体内的集中,有助于防止侧方种植体机械 并发症的发生。

2.对种植体骨界面应力分布的影响:随种植基桩高度的降低,中央、侧方种植体骨界面压应 力峰值均下降,两处压应力峰值之差也减小,说明压应力在中央与侧方种植体骨界面的分布 更为均匀,尤其以侧方种植体骨界面处压应力峰值下降明显,当种植基桩高度下降2mm时, 该处压应力峰值约下降14%,种植体骨界面压应力峰值随种植基桩高度而降低,从力学角度 可作如下说明:种植覆盖义齿属于复杂的静不定结构,在本实验条件下种植体受力属压缩与 弯曲的组合(压弯联合),此时种植体骨界面所受的压应力可用下面公式表示:

压应力最大值a=P/F+Mmax/W

P:垂直外力;F:种植体横截面积;W:抗弯载面系数,W=πd3/32,当种植体直径d一定 时,W为常数;Mmax:咀嚼过程中侧向力作用于种植体产生的最大弯距。本实验条件下,P、 F、W是不变的,而弯矩M与受力物体(即种植基桩)高度成正比,高度增加,弯矩增大,骨界 面压应力值增加,反之骨界面压应力值则减小。人们已证明临床上侧方种植体周围骨组织易 发生吸收而致种植失败,是与该处压应力高度集中有关,本研究认为在保证义齿固位稳定前 提下,适当降低骨外段种植基桩高度可使压应力在中央、侧方种植体骨

相关推荐
最新更新